The exact distribution of the Stein-rule estimator
نویسندگان
چکیده
منابع مشابه
survey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولBootstrapping the Stein Variance Estimator
This paper applies the bootstrap methods proposed by Efron (1979) to the Stein variance estimator proposed by Stein (1964). It is shown by Monte Carlo experiments that the parametric bootstrap yields the considerable accurate estimates of mean, standard error and confidence limits of the Stein variance estimator.
متن کاملEmpirical Bayes and the James–Stein Estimator
Charles Stein shocked the statistical world in 1955 with his proof that maximum likelihood estimation methods for Gaussian models, in common use for more than a century, were inadmissible beyond simple oneor twodimensional situations. These methods are still in use, for good reasons, but Stein-type estimators have pointed the way toward a radically different empirical Bayes approach to high-dim...
متن کاملEntropy Inference and the James-Stein Estimator
Entropy is a fundamental quantity in statistics and machine learning. In this note, we present a novel procedure for statistical learning of entropy from high-dimensional small-sample data. Specifically, we introduce a a simple yet very powerful small-sample estimator of the Shannon entropy based on James-Stein-type shrinkage. This results in an estimator that is highly efficient statistically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 1984
ISSN: 0304-4076
DOI: 10.1016/0304-4076(84)90041-1